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RADYOAKTİF BOZUNMA 

 

Deneyde Kullanılan Araçlar 

 

G-M Tüpü, Sayaç, DC Güç Kaynağı, Dirençler (5 M, 5.6 M, 1 M), Kapasitör (0.01F), 

Potansiyometre, Kronometre 

 

GIRIŞ 
 

Birçok çekirdek kararlı değildir ve kendiliğinden radyoaktif bozunma ile bileşimlerini 

değiştirirler. Nötron ve protonların her bileşimi kararlı çekirdekleri oluşturmaz. Genellikle 

ağır çekirdeklerde nötronların oranının artmasına karşılık, hafif çekirdekler ( kütle numarası < 

20 ) yaklaşık olarak eşit sayıda nötron ve proton içerirler. 

 

KURAMSAL BILGI 

 

Bir çekirdek, kendiliğinden radyoaktif olarak bozunarak bir 
He çekirdeği (alfa parçacığı), bir 

elektron (beta parçacığı) veya bir foton (gama ışını) salarak uyarılmış bir enerji düzeyinden 

veya bir şekillenimden kurtularak daha kararlı duruma ulaşır.  

 

Herhangi bir radyoaktif maddenin bir numunesinin aktifliği, atom çekirdeklerinin bozunma 

hızıdır. Eğer bir örnekte belli bir zamandaki çekirdek sayısı N ise, onun aktivitesi; 

 

  R
dN

dt
  

 

ile verilir. Burada dN/dt negatif değere sahip olduğundan R’nin pozitif olması için önüne eksi 

işareti konur. Aktiflik için kullanılan birim, saniyedeki bozunma sayısı olduğundan Curie (C) 

olarak ifade edilir.  

Radyoaktif bozunma olayı istatistiksel bir olaydır. Radyoaktif maddenin bir numunesinin bir 

çekirdeği belirli bir bozunma olasılığına sahiptir. Ancak, belirli bir zaman aralığı içinde hangi 

çekirdeklerin bozunacağını önceden bilmenin bir yolu yoktur. Eğer numune yeterli derecede 

büyük ise; yani çekirdek sayısı çok fazla ise, onun belli bir zaman aralığında bozunma 

yüzdesi, her bir çekirdeğin bozunma olasılığına çok yakın olacaktır. Zaman aralığı yeterince 

uzun ise ve sayma oranı yeterince düşükse her bir bozunma sayılabilir.  

 

Radyoaktif element içeren bir kaynak oldukça fazla sayıda kararsız çekirdeğe sahiptir ve bu 

kararsız çekirdeklerden herhangi birinin belirli bir zaman aralığında bozunma olasılığı 

oldukça düşüktür.  

 

Binom dağılımı, birbirinden bağımsız N olaydaki olasılığı verir.  

 

  P n)
N

N n) n
p qn N n(

!

( ! !



  

 

Burada p, bir olayın gerçekleşme olasılığı ve q gerçekleşmeme olasılığıdır. Bu bağıntı ile 

verilen olasılık dağılımı, n<<N, p<<1 ise a=Np, yani ortalama değerin sabit kaldığı 
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koşullarda, Poisson dağılımına ulaşır. Çekirdek sayısının fazla, buna karşın bozunma ürünü 

olan parçacığın çıkma olasılığının küçük olmasından ötürü Poisson dağılımına geçilir.  

Belirli bir zaman aralığında n tane parçacığın bozunma olasılığı Poisson dağılımı ile verilir.  

 

  P n
a e

na

n a

( )
!





 

 

Burada a, belirli bir zaman aralığındaki ortalama sayma sayısıdır. Bu dağılımın standart 

sapması 

 

    a  
 

ile verilir. Deneysel ortalama değer; 

  a n   
nF(n

F(n

)

)




 

 

ile tanımlanır. n  değeri çok büyüdüğünde Poisson dağılımı, normal ya da Gauss dağılımına 

yaklaşır ve 

  
21/2 ( )/2( ) (2 ) n nP n e      

 

ifadesi ile verilir. Burada  = (n )1/2 olan standart sapmadır. Genellikle, 

     ( ) (n n P n)
n

 

ile tanımlanır. Gauss dağılımı, Poisson dağılımının yaklaşık bir ifadesi olarak kullanıldığında 

  a n    

olarak alınır.  

 

DENEY 

 

Deney Düzeneği 
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Bu deneyde Geiger-Müller tüpü radyoaktif bozunmada detektör olarak kullanılacaktır. Biz, 

belirli zaman aralıklarındaki bozunma sayısındaki dalgalanmaların ölçümü ile ilgileneceğiz. 

 

Deneyin Yapılışı 

 

1.  Şekildeki devreyi kurunuz. 1 C’lik 60Co gama kaynağını G-M tüpünün yakınına koyarak 

tüp gerilimini sayaçta ilk sayım gözleninceye kadar arttırınız. Sayma gözlendikten sonra tüp 

gerilimini birkaç 50V daha arttırarak G-M tüpünü plato bölgesine getiriniz. 60Co kaynağını, 

GM tüpünden sayma hızı saniyede 1 atma oluncaya kadar uzaklaştırınız. 10 saniyelik zaman 

aralığı için 50 (N) sayma yapınız. Belirli zaman aralıklarındaki sayma sayıları (n) için 

frekansları hesaplayınız. Sayma sayısına karşı frekans değerlerinin histogram grafiğini çiziniz. 

Deneysel verileri kullanarak n  değerini ve standart sapmayı hesaplayınız. Poisson dağılımı 

ifadesini kullanarak teorik olasılık ve ortalama değeri hesaplayarak, deneysel sonuçlarla 

karşılaştırınız. Dağılımdaki her bir değeri, deneyin tekrarlanma sayısı ile çarparak beklenen 

frekans değerlerini hesaplayarak deneysel sonuçlarla karşılaştırmak için grafiği, histogram 

grafiğinin üzerine çiziniz.  

 

2.  Zaman aralığını 20 saniyeye çıkararak yukarıdaki işlemleri tekrarlayınız. n , , teorik ve 

deneysel frekansları hesaplayınız. Histogram ve beklenen (teorik) frekans değerlerinin 

grafiğini çiziniz. Sonuçları t = 10s ile elde edilen verilerle karşılaştırınız.  

 

NOT 
n  değeri giderek arttığında dağılımın n  etrafında giderek kesinleştiğine dikkat ediniz. Kendi 

verilerinizle karşılaştırınız.  

 

SORULAR 

 

1.  Poisson dağılımındaki a parametresi, verilerinizdeki  n  değerinden hesaplanarak tahmin 

     edilebilir. Bu sonuç ne kadar güvenilirdir? Yani, bu yolla elde edilen ortalama değerin 

     standart sapması ne kadardır? 

 

2.  Eğer belirli zaman aralığındaki ortalama sayma  n  ile veriliyorsa, herhangi bir en az  n  

     bozunmanın gözlenme olasılığı ne olacaktır? 

 

3. Zaman aralığı 10s’den 20s’ye çıkartıldığında Poisson dağılımının hangi dağılıma yaklaştı- 

     ğını söyleyebilirsiniz? 
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MAXWELL BOLTZMANN HIZ DAĞILIMI 
 

Deneyde Kullanılan Araçlar   

 

Maxwell Boltzmann hız dağılım deney seti, çembersel oluklu sektör, dijital stroboskop, 400 

cam bilye, kronometre, güç kaynağı (15 VAC/ 12 VDC/ 5A), bağlantı kabloları.  

 

GİRİŞ 

 

Birbirinden bağımsız parçacıkların oluşturduğu T sıcaklığında bulunan ve ısı deposu ile 

yalnızca ısıl etkileşmede olan bir sistemin r kuantum durumunda bulunma olasılığını veren 

dağılıma kanonik dağılım denir. Bu dağılıma göre bir sistemi r durumunda, r enerjisinde 

bulma olasılığı  

P er
r 

                                                                                 (1) 

 

dir. Burada 1)(  kT  sistemin ısıl dengede olduğu ısı deposuna ilişkin mutlak sıcaklık 

parametresidir.  

 

V hacminde, T sıcaklığında ısıl dengede bir ideal gazı göz önüne alalım. Bu gaz 

moleküllerinin klasik olarak incelenebileceğini varsayalım. Bu gazın yalnızca bir molekülünü 

göz önüne aldığımızda bu moleküle, geri kalan moleküllerin oluşturduğu T sıcaklığındaki ısı 

deposu ile ısıl dengede olan bir sistem gözüyle bakılabilir. Molekül tek atomlu olsun. Eğer 

gravitasyon gibi dış kuvvet alanları yok sayılırsa, bu molekülün  ile gösterilen enerjisi 

yalnızca  

 

m

p
mv

22

1 2
2                                                                    (2)       

 

kinetik enerjisidir. Burada gazın yeterince seyreltilmiş olduğunu kabul ediyoruz. Bu nedenle 

diğer moleküllerle etkileşim yok sayılabilir.  

 

Molekülün durumu klasik olarak x,y,z konum koordinatları ve px,py,pz momentum 

koordinatları ile belirlenir.  

 

dxdydzrd 3                                                                 (3)      

ve 

zyx dpdpdppd 3                                                                     (4) 

 

olmak üzere kanonik dağılımdan yararlanarak molekülün r


 ile rdr


  arasında ve p


 ile 

pdp


  arasında olma olasılığı 

 

   
 2 23 3 3 3( , )
p m

P r p d rd p e d rd p


                                                 (5) 

 

dir. Aynı bağıntıyı momentum yerine hız cinsinden de yazabiliriz. mpv


  molekülü r


 ile 

rdr


  arasında bir yerde ve v


 ile vdv


  aralığında bir hıza sahip olma olasılığı 
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 P r v d rd v e d rd v
mv

'( , )
  3 3 1 2 3 3

2


 

                                             (6) 

dir.  

 

vdvf 3)( birim hücrede hızları v


 ile vdv


  aralığında yer alan parçacıkların sayısı olmak 

üzere 

f v d v
NP r v d rd v

d r
( )

'( , )3
3 3

3
                                                              (7) 

 

 
f v d v Ce d v

mv
( ) 3 1 2 3

2

 
 

                                                                    (8) 

 

P' (ya da f) yalnızca v ’nin büyüklüğüne bağlıdır, doğrultusuna bağlı değildir (niçin?). Eşitlik 

8’de tüm olası hızlar üzerinden toplamın birim hücredeki moleküllerin ortalama sayısı olan 

n’ye eşit olması gerekir. Bu işlem yapıldığında  

 

C n
m














2

3 2

                                                                        (9) 

 olarak bulunur.    

  

 

KURAMSAL BİLGİ 

 

Maxwell-Boltzmann Parçacıkları 

 

Bu tür parçacıklar birbirinden ayırt edilebilir ve herhangi bir enerji düzeyine ya da durumuna 

yollanan parçacık sayısında  

 

E i
i

   N N i
i

                             (10) 

 

koşullarına uyulduğu sürece, bir kısıtlama yoktur.  

 

Birim hacimde, hızları  v v  v  ile v dv  aralığındaki moleküllerin ortalama sayısı 

F v dv( ) , bu aralıkta hıza sahip tüm moleküllerin üzerinden doğrultuya bakılmaksızın toplam 

alınarak bulunur.  

 

F v dv f v d v( ) ( ) 
3

                                                        (11)  

 

v v v dv    

Burada d v3
 hız uzayında iç yarıçapı v  dış yarıçapı v dv  olan bir küresel kabuğa karşı 

gelir ve 4 2v dv  ile verilir. dv sonsuz küçük olduğundan f v( )  yalnızca v ’nin 

büyüklüğüne bağlıdır ve küresel kabuğun her yerinde aynı değeri alır. Böylece Eş. 11 

 

F v dv f v v dv( ) ( ) 4 2                                                               (12)   
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şekline dönüşür. Eşitlik 8’de verilen f v( )  tek bir molekül için düzenlenerek Eşitlik 12’de 

yerine konulduğunda, bir molekülün hızının büyüklüğünün v  ile v dv  aralığında 

yayılma olasılığını veren   

dvve
kT

m
dvvF kTmv 22/

2
3

2

2
4)( 












                                                (13) 

 

bağıntı elde edilir. Bu bağıntıya Maxwell Boltzmann Hız Dağılım fonksiyonu 

denilmektedir. Dağılım fonksiyonu belli bir hız değerinde maksimum bir değere sahip olur ki 

bu hız değerine en olası hız veno adı verilmektedir.  Gerekli türev alma işlemi yapıldığında  

            

veno
kT
m

 2
                                                               (14) 

 

olarak bulunur. Eşitlik 13’de veno  kısaltması kullanılırsa, dağılım fonksiyonu 

 

F v
v

v
e

eno

v veno( ) / 4 2

3

2 2


                                      (15) 

 

şekline dönüşür. Bu fonksiyonu sistemdeki toplam parçacık sayısı N ile çarparsak, hızlarının 

büyüklüğü v   ile v dv  aralığında yayılan moleküllerin sayısını veren dağılım 

fonksiyonunu elde ederiz.  

n(v)
N v

v
e

eno

v /veno 
4 2

3

2 2

                  (16) 

 

Öte yandan molekülün hızının büyüklüğünün ortalaması, 

 

v F v vdv


 ( )
0

                                                                       

(17) 

 

ortalama değer bağıntısından bulunabilir. Burada (13) bağıntısı kullanılırsa, 

 

 v m kT e v dv kT mmv kT 


4 2 83 2 2 3

0

1 22

  ( / ) // /
                       (18) 

 

bulunur. Bu hız çoğu kez molekülsel hız olarak bilinir. Hızın karesinin ortalaması ise, 

 

 v P v v dv m kT e v dv kT mmv kT2 2 3 2

0

2 4

0

4 2 3
2

  





 ( ) ( / ) // /                (19) 
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bulunur. Hızın karesinin ortalamasının karekökü olarak tanımlanan ve kısaca v kok  ile 

gösterilen hız,  

v kT mkok  ( / ) /3 1 2                                                         (20) 

olacaktır. 

 

Deney sisteminde bilyeler eğik atış hareketi yaptıkları için  konumları ve hızları arasından şu 

şekilde bir ilişki vardır: 

x vt h gt t
h

g
x v

h

g
v x

g

h
    , , , ,

1

2

2 2

2
2

        (21) 

 

Hız dağılım fonksiyonu bilyelerin konumuna göre yeniden düzenlenirse,  

 

 
n x N

m

kT

g

h
x e

mgx h

kT( ) 






















4
2 2

3
2

3
2

2
2

2

2




                          (22) 

 

şekline dönüşür. Bu fonksiyon da belli bir x değerinde maksimum değer alır ki bu konuma en 

olası konum denir. Eşitlik 22 kullanılarak gerekli hesaplama yapıldığında enox  için  

 

g
h

enomg
hkT

eno vx 24                                       (23) 

 

ifadesi elde edilir. Bu durumda dağılım fonksiyonu  

 

n x
N x

x
e

eno

x xeno( ) / 4 2

3

2 2


       

 (24) 

  

olarak düzenlenebilir. Deneyde dağılıma katılan bilye sayısı net olarak bilinmediği için  

dağılım fonksiyonundaki N sayısı belli değildir. Bu nedenle fonksiyonun her deneyde 

dağılıma katılan efektif bilye sayısına göre yeniden düzenlenmesi gerekmektedir. Bu amaçla, 

A bir sabit olmak üzere, dağılım fonksiyonunu aşağıdaki şekilde yazmak mümkündür. 

 

n x A
x

x
e

eno

x xeno( ) / 

2

3

2 2

                        (25) 

 

Deneysel olarak bulunan xeno ve  n xeno( )  değerleri kullanılarak A sabiti bulunabilir.   

 

 

Maxwell-Boltzmann hız dağılımının geçerli olduğu sınırlar  

 

Maxwell hız dağılımına ulaşırken kanonik dağılımı klasik yaklaşım için kullandık ve burada 

bu klasik tanımın geçerliliği için  
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00PS    yani S
p

0 0
0

02
  




                                           (26) 

 

Burada S0  ortalama serbest yol,  0  De Broglie dalgaboyudur. T sıcaklığında, m kütleli bir 

gazın p0  en olası momentumunun büyüklüğü bu molekülün veno  hızından bulunabilir. 

 

p mv mkTeno0 2                                                         (27) 

 

Buna karşı gelen de Broglie dalga boyu 

 


 

0

0 2
 

P mkT
                                                       (28) 

 

dir. Klasik tanım molekülleri belirli yörüngelerde hareket eden ayırt edilebilir parçacıklar 

olarak kabul eder. Bu kabulün geçerli kalması için en yakın iki molekül arasındaki uzaklık S0   

 

S0 0                                                                        (29) 

 

olmalıdır. Bu koşul sağlanmıyorsa kuantum mekaniksel etkiler işin içine girer, özellikle 

moleküllerin ayırt edilemez olması önem taşır.  En yakın iki molekül arasındaki S0  uzaklığını 

yaklaşık olarak belirleyebilmek için her molekülün kenarı S0  olan bir küpün içinde olduğunu 

düşünelim. Bu küpler N tane molekülden oluşan gazın V hacmini doldururlar.  Bu durumda  

birim hacimdeki molekül sayısı n = N/V olmak üzere,   

 

S N V0

3                                                                              

(30) 

dir. Buradan da  

S
V

N
n0

1
3

1
3









 



                                             (31) 

 

Bu durumda klasik yaklaşımın geçerlilik koşulunun kullanılmasıyla 

  

 0

0

1
3

2
1

S mkT
n                                                            (32) 

 

koşulu elde edilir. Bu bağıntı klasik yaklaşımın, gazın yeterince seyreltilmiş (n küçük), T 

sıcaklığının yeterince büyük ve molekülün kütlesinin çok küçük olmaması durumunda geçerli 

olacağını gösterir.  
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DENEY 

 

Deney Düzeneği 

 

 
 

Şekil 1. Maxwell-Boltzmann hız dağılım deney düzeneği 

 

                       

 

Tablo 1. Deneyle ilgili sabitler   

 

Bilyelerin titreştirildiği hacim  V =  72  cm3  

Titreşiciye konulan toplam bilye sayısı  N =  400 

Frekans f =  2500  devir/dakika 

Bilyelerin düşme yüksekliği     h = 8  cm 

 

 

Deneyin Yapılışı 

 

Şekil 1’de verilen deney düzeneğini kurun. Titreştirici içinde cam bilye olup olmadığını 

kontrol edin, eğer titreştirici içinde cam bilye var ise ya onları çıkartın ya da sayısını tespit 

edin. Ayrıca oluklu sektör içinde de bilye bulunmamasını sağlayın. Cam bilyelerin 

titreştiriciden çıkışını sağlayacak olan deliği kapatın. Cam bilyelerden 400 tane sayarak (varsa 

titreştirici içindekiler de dahil) titreştirici içine boşaltın. Güç kaynağı ile oynayarak bilyeleri 

titreştirmeye başlayın. Belli bir frekansa (2500 devir/dakika) ayarlanmış olan stroboskobu 

kullanarak bilyelerin titreşim frekansını belirleyin. Bilyelerin çıkışı için titreştiricinin deliğini 

açarak 2 dakika bekleyin ve sonra kapatın. Çembersel sektörlere düşen bilyeleri başka yerlere 

dökmeden oluklu sektörlere akıtın ve oluklu sektörlerde bilyelerin dağılımına bakın. Her bir 

oluktaki bilyeleri sayarak Tablo 2’yi doldurun. Aynı işlemleri t = 4 dakika için de tekrarlayın.  
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Verilerin Değerlendirilmesi   

                  

Deneysel verilerden xeno   ve  n xeno( )  değerlerini belirleyin ve bu değerleri kullanılarak A 

sabitini hesaplayın. Daha sonra her bir x değeri için teorik n(x) değerlerini hesaplayarak Tablo 

2’de yerlerine yazın. 

  

Deneysel n(x) değerlerinin x ile değişimini gösteren histogramı ve kuramsal olarak elde 

edilen n(x) değerlerinin x ile değişimini gösteren eğriyi aynı grafik üzerine çizin. Histogram 

ile dağılım fonksiyonunu uyumlu olup olmadığını irdeleyin.  

 

Ayrıca veno ,  v kok  ve v  değerlerini de hesaplayarak t süresi ile ilişkili midir açıklayın. 

 

 

 

Tablo 2. Deneysel ve kuramsal veriler 

 

 t = 2 dk  t = 4 dk.  

x(cm) n(x) deneysel n(x) kuramsal n(x) deneysel n(x) kuramsal 

0     

1     

2     

3     

4     

5     

6     

7     

8     

9     

10     

11     

12     

13     

14     

15     

16     

17     

18     

19     

20     

21     

22     

23     

24     
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SORULAR 

 

1.   Maxwell hız dağılımına uyan bir molekülün kinetik enerjisinin en olası değerini veren     

      en kısa ifadeyi türetiniz. 

  

2.   Maxwell hız dağılımına uyan bir gaz sisteminde moleküllerin hız bileşenlerinin   

      büyüklüğünün ortalamasını veren ifadeyi bulunuz. 

 

3. Eşitlik 8’de yer alan C sabitinin Eşitlik 9’da verilen ifadeye eşit olduğunu gösteriniz.  

4. Gerekli işlemleri yaparak enov , v , 2v  ve enox ’nin föyde verilen ifadelerini bulunuz.  

 

5.   Başlangıçta 400 tane bilye sayılarak titreştirici içine konulduğu halde niçin dağılıma  

      katkıda bulunan bilye sayısı bilinmiyor kabul edilerek efektif bilye sayısı hesap    

      edilmektedir? 
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ISIL IŞINIMIN İNCELENMESİ 
 

Deneyde kullanılan araçlar 

 

Işıma algıcı, ısıl ışıma kübü, pencere camı, yansıtıcı malzemeler, milivoltmetre, ohmmetre, 

termometre, Stefan-Boltzmann lambası, güç kaynağı, ampermetre (0–3 A), voltmetre (0–12 

V) 

 

GİRİŞ 

 

Sıcaklığı, mutlak sıfır sıcaklığının üstünde olan her cisim ısı yayar. Örneğin bir metal 

ısıtıldığında, sıcaklığına bağlı olarak kırmızıdan, sarı ve beyaza kadar renk alır, başka bir 

deyişle görünür bölge frekans aralığında yayınım yapar. Cisimlere ilişkin yayınım frekansları 

doğaldır ki görünür bölgenin dışında da değerler alabilir. Bir cismin ışıması o cismin üzerine 

düşen ışınımı soğurma yeteneği ile de yakında ilgilidir. Cisim sabit sıcaklıkta ise çevresi ile 

ısıl dengede olduğundan, ışınımı yayma hızı ile ışınımı soğurma hızının aynı olması gerekir. 

Üzerine düşen tüm ışınımı soğuran ideal cisme siyah cisim adı verilir. Deneysel olarak böyle 

bir ortam duvarları T sıcaklığında tutulan içi oyuk bir cisimle gerçekleştirilebilir. Bu cismin 

duvarında açılacak küçük bir delikten dışarı çıkan ışınımın enerji yoğunluğunun incelenmesi 

19. yüzyıl sonlarında araştırmacıların başlıca konusu olmuş ve sonuçta kuvantum kuramının 

ortaya çıkmasını sağlamıştır. Işınım şiddetinin frekansa bağlı olarak incelenmesinden, 

ışınımın 

a) sürekli olduğu, b) geniş bir frekans aralığını kapsadığı, c) maksimum şiddetin T'ye bağlı bir 

dalga boyunda olduğu, d) maddenin şeklinin ve kullanılan malzemenin önemli olmadığı e) 

yalnız T ve  frekansına bağlı olduğu gözlenmiştir. 

Oyuk içinde enerji yoğunluğunun ( T sıcaklığındaki oyuğun birim hacminde  ile +d dalga 

boyu aralığındaki enerji) değeri Wien tarafından termodinamik yöntemlerle  

 

u d
f T

dT ( )
( )

 





5
  

olarak bulunmuştur. Daha sonra Stefan siyah cismin toplam ışınım enerjisi için  

E u d TT 



 ( )   4

0

 

bağıntısını bulmuştur. Burada  = 5.67x10-8 W/m2K4 Stefan-Boltzmann sabiti,  ışınım yapan 

yüzeyin yayınım katsayısıdır. Siyah cisim için  =1 dir. uT()'nın açık ifadesini elde etmek 

üzere siyah cismin duvarlarının  dalga boyunda ışınım yapan belli sayıda titreşiciden 

oluştuğu ve her bir titreşici enerjisinin kT'ye eşit olduğu varsayılmıştır. Buradan Rayleigh ve 

Jeans, oyuğun birim hacminde  ile +d dalga boyu aralığındaki enerji için, 





 d

kT
dT 4

8
)(   

sonucuna ulaşmıştır. Büyük dalga boylarında bu sonuç deneyle uyumludur. Ancak toplam 

ışınım enerjisi için 

E dT  



   ( )
0
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kabul edilemez bir sonuç verir (Şekil.1). 

 

 

Şekil 1. 

 

Kuramla deneysel sonuçlar arasındaki bu uyumsuzluğu çözmek üzere Max Planck, 1900 

yılında, deneyle iyi uyuşan bir bağıntı önerdi. Bu bağıntıda, bugün Planck değişmezi olarak 

adlandırdığımız önemli bir sayı, h=6.625x10-34 Js yer alıyordu. Buna göre oyuk içindeki bir 

osilatörün enerji soğurması ya da yayınımı sürekli biçimde değil, h gibi bir kuvantumun tam 

katları biçiminde, 

 

En= nh          n=0,1,2,.... 

 

değerlerinde gerçekleşiyordu. Planck ışınım bağıntısı 

 








d

e

hc
d

kThcT
1

18
)(

/5 
  

ile verilir ve deneyle iyi uyum sağlar. 
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DENEY 

 

KESİM 1: Isıl Işınıma Giriş 

 

Deneyin Yapılışı 

 

1. Şekil 2'de gösterilen devreyi kurunuz. 

 

2. Isıl ışıma kübünü açınız ve güç düğmesini YÜKSEK konumuna getiriniz. Kübün direnci 

40 k değerine düştüğünde güç düğmesini 5.0 konumuna ayarlayınız. 

 

3. Küp ısıl dengeye ulaştığında (ohmmetreden okunan direnç değeri yaklaşık sabit 

kaldığında), ışıma algıcını kullanarak, kübün dört farklı yüzeyinden yayılan ışımayı algıcı 

her yüzeye dokundurup bu sırada voltmetredeki sapmayı kaydederek okuyunuz. 

Ohmmetreden okunan direnç değerine karşı gelen sıcaklığı Tablo.1.'den bulunuz. 

 

4. Güç düğmesinin konumlarını sırası ile 6.5, 8.0 ve YÜKSEK konumlarına ayarlayınız, her 

konum için kübün ısıl dengeye gelmesini bekledikten sonra yukarıdaki ölçümleri 

tekrarlayınız. 

 

5. Algıcı, ışıma kübünün siyah yüzeyinden  5 cm uzaklığa yerleştirerek ölçtüğü değeri 

kaydediniz. 

      

Daha sonra ölçümleri araya cam, köpük gibi farklı malzemelerle tekrarlayınız.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 2. 



 16 

 

 

KESİM 2. Stefan-Boltzmann Yasası 

 

Deneyin Yapılışı 

 

1. Deneyin yapıldığı ortamın sıcaklığını ve bu sıcaklıkta Stefan-Boltzmann lambasının 

filaman direncini (Rref) duyarlıklı olarak ölçünüz. 

 

2. Şekil 3'deki devreyi kurunuz. Devrenin kuruluşunda, algıcın ön yüzünü filamandan  6 

cm uzakta olacak biçimde ayarlayınız ve algıç ile filamanın yüksekliklerinin aynı 

olmasına özen gösteriniz. 

 
Şekil 3. 

 

3. Güç kaynağını açınız ve 1V - 10 V aralığında 1 V'luk adımlarla akım değerlerini ve 

milivoltmetreden ışınıma ilişkin gerilim değerlerini Rad(mV) okuyunuz. 

       

      ÖNEMLİ UYARI! Algıçla okumaları hızlıca yapınız. Okumalar arasında algıçla lamba 

arasına bir yansıtıcı levha yerleştirerek algıcın sıcaklığının sabit kalmasını sağlayınız. 

 

4. Her bir gerilim değeri için Ohm Yasasını kullanarak filaman direncini ve her direnç 

değerinde 

 

T
R R

R
T

ref

ref

ref





 

     bağıntısı uyarınca T filaman sıcaklığını hesaplayınız. Burada  filaman direnci için sıcaklık 

katsayısıdır ve tungsten için  = 4.5x10-3 K-1 dir. 

 

5. Rad (mV)-T4 grafiğini çiziniz ve yorumlayınız. 
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SORULAR 

 

1.  Wien yer değiştirme yasasını açıklayınız ve bu yasayı Planck bağıntısından türetiniz. 

 

2. Planck bağıntısını kullanarak siyah cismin yaydığı ışınımın sıcaklığın 4. kuvveti ile 

orantılı olduğunu gösteriniz. 

 

3. 2500 K'de tutulan bir siyah cisim için yayınımın maksimum olduğu dalgaboyunu bulunuz,  

     elektromagnetik spektrumun hangi bölgesine düştüğünü açıklayınız. 

 

 

 
 
Tablo 1. Isıl ışınım kübü için direnç-sıcaklık verileri. 

 
Termistör

Direnci 

() 

Sıcaklık 

(C) 

Termistör

Direnci 

() 

Sıcaklık 

(C) 

Termistör

Direnci 

() 

Sıcaklık 

(C) 

Termistör

Direnci 

() 

Sıcaklık 

(C) 

Termistör

Direnci 

() 

Sıcaklık 

(C) 

Termistör

Direnci 

() 

Sıcaklık 

(C) 

207850 10 66356 34 24415 58 10110 82 4615.1 106 2881.0 130 

197560 11 63480 35 23483 59 9767.2 83 4475.0 107 2218.3 131 

187840 12 60743 36 22590 60 9437.7 84 4339.7 108 2157.6 132 

178650 3 58138 37 21736 61 9120.8 85 4209.1 109 2098.7 133 

169950 14 55658 38 20919 62 8816.0 86 4082.9 110 2041.7 134 

161730 15 53297 39 20136 63 8522.7 87 3961.1 111 1986.4 135 

153950 16 51048 40 19386 64 8240.6 88 3843.4 112 1932.8 136 

146580 17 48905 41 18668 65 7969.1 89 3729.7 113 1880.9 137 

139610 18 46863 42 17980 66 7707.7 90 3619.8 114 1830.5 138 

133000 19 44917 43 17321 67 7456.2 91 3513.6 115 1781.7 139 

126740 20 43062 44 16689 68 7214.0 92 3411.0 116 1734.3 140 

120810 21 41292 45 16083 69 6980.6 93 3311.8 117 1688.4 141 

115190 22 39605 46 15502 70 6755.9 94 3215.8 118 1643.9 142 

109850 23 37995 47 14945 71 6539.4 95 3123.0 119 1600.6 143 

104800 24 36458 48 14410 72 6330.8 96 3033.3 120 1558.7 144 

100000 25 34991 49 13897 73 6129.8 97 2946.5 121 1518.0 145 

95447 26 33591 50 13405 74 5936.1 98 2862.5 122 1478.6 146 

91126 27 32253 51 12932 75 5749.3 99 2781.3 123 1440.2 147 

87022 28 30976 52 12479 76 5569.3 100 2702.7 124 1403.0 148 

83124 29 29756 53 12043 77 5395.6 101 2626.6 125 1366.9 149 

79422 30 28590 54 11625 78 5228.1 102 2553.0 126 1331.9 150 

75903 31 27475 55 11223 79 5066.6 103 2481.7 127   

72560 32 26409 56 10837 80 4910.7 104 2412.6 128   

69380 33 25390 57 10467 81 4760.3 105 2345.8 129   
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Adı-Soyadı: 

              No: 

ISIL IŞINIMIN İNCELENMESİ 

 

KESİM I. ISIL IŞINIMA GİRİŞ 

 

Konum 5 6,5 8 Yüksek Yüksek 

Yüzey Rad (mV) Rad (mV) Rad (mV) Rad (mV) Siyah Yüzey Rad (mV) 

Siyah     5cm  (mV)  

Beyaz     Cam  (mV)  

Parlak Al     Kağıt (mV)  

Mat Al     Köpük (mV)  

Küp Sıcaklığı (oC)     Naylon (mV)  

 

KESİM II. STEFAN-BOLTZMANN YASASI 

T Ref = ……….. K 

R Ref = ………..  

 

VERİLER HESAPLAMALAR 

V (V) I (A) Rad (mV) R=V/I () T (K) T4 1013 (K4) 

1,00      

2,00      

3,00      

4,00      

5,00      

6,00      

7,00      

8,00      

9,00      

10,00      

11,00      

12,00      

 Tungsten = 4.510 -3  K-1 
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YÜKLENMİŞ ZAR 
 

 

GİRİŞ 

 

Bu deneyde bir çift zar kullanılacaktır; bu çiften birinin bir yüzüne küçük kurşun parçalar 

eklenerek yüklenmiş, diğeri ise yüklenmemiştir. Sorun hangi zarın ve hangi yüzünün 

yüklenmiş olduğunu bulmaktır. Problemin çözümü için çeşitli yollar önerilebilir. Örneğin, 

zarla aynı yoğunluğa sahip bir sıvı kullanılabilir. Zar sıvının içine batırılır ve bir yüzünün her 

zaman yukarı gelip gelmediği not edilir. İkinci yöntem olarak zar kendinden daha az yoğun 

olan viskoz bir sıvının içinde düşmeye bırakılabilir. Bir diğer yöntem de zarı birkaç değişik 

şekilde bağlayıp asarak kütle merkezini bulmak olabilir.  

 

Bu deneyde şans oyunları yöntemi kullanılacaktır. Bu yöntemde her zar defalarca atılarak 

hangi yüzünün yukarı geldiği kaydedilir. Bu yöntemin kötü yanı büyük hatalar verme 

olasılığıdır. Çünkü hangi yüzün yukarı geldiği zarın, atıldığı andaki konumuna, dönme 

derecesine, masaya nasıl çarptığına ve nasıl yüklendiğine bağlıdır. Bütün bu etkenlerin 

gelişigüzel olduğu varsayılır ve zar yeterince çok sayıda atılırsa zarın yüklü olup olmadığı ve 

nasıl yüklü olduğu belirlenebilir.  

 

 

DENEY 

 

Deneyde yeşil ve kırmızı renkte iki zar kullanılacaktır. N zarların atılma sayısını, n de yukarı 

gelen yüzeyi göstersin. Bundan dolayı n, 1’den 6’ya kadar değişir. Her sayının kaç kez geldiği 

F(n) ile gösterilir ve frekans olarak adlandırılır. Örneğin bir deneyde 1 sayısı 7 kez, 2 sayısı 5 

kez, vb. gelmişse F(1) = 7, F(2) = 5, vb. olur. 

 

Her zarı 10 kez (N=10) atın ve her zar için her yüzün geliş frekansını kaydedin. Her frekans 

için F(n)/N’yi hesaplayarak her yüz için olasılığı belirleyin. Şekil1’dekine benzer olarak 

bulduğunuz değerlerin histogramını çizin. 

 

Bulunan deneysel olasılığı, f(n) ile gösterdiğimiz kuramsal olasılıkla karşılaştıralım. f(n)’nin 

ne olmasını bekleriz? Yüklenmemiş bir zar için altı yüzünün her birinin gelmesi aynı derece 

de olasıdır ve bu nedenle f(n) = 1/6 = 0,1666… olmasını bekleriz. Bu değerden sapma 

gözlersek ya N çok küçüktür ve gelişigüzel dalgalanmalar göze çarpacak büyüklüğü bulur 

veya yüzeyler arasında sistematik bir fark vardır (zar yüklüdür). Burada istatistiksel problem, 

verilerin çözümlenmesi ile f(n) = 1/6’dan gözlenen sapmaların önemli olup olmadığının 

belirlenmesidir.  

 

Fiziksel temele göre şunu bekleyebiliriz; Belli bir yüz gelişigüzel frekansla değil de daha sık 

yukarı geliyorsa, zar bunu altta kalan yüzün zararına yapıyor demektir. Bundan dolayı zıt 

yüzler için olasılık farkına bakmak isteriz. Şekil 2’dekine benzer olarak zıt yüzlerin fark 

histogramını çizin. Değerlerinizden hangi zarın ve hangi yüzünün yüklü olduğunu tahmin 

edebilir misiniz? Bir deneme yapın. 
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Şekil 1. Olasılık histogramı 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Şekil 2. Zıt yüzler için olasılık histogramı 

 

Her zarı 100 kez atarak frekansları kaydedin. Şekil 1 ve 2’deki gibi yeni olasılık 

histogramlarını çizin. Şimdi hangi zarın yüklü ve hangi yüzünün yüklü olduğunu 

düşünüyorsunuz? İlk yaptığınız doğru muydu? Yanılmış olmanız olağandır. 

 

 

 

0 1 2 3 4 5 6

0,0
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 n 



 21 

Şimdi aşağıdaki soruları sorabiliriz: 

 

1- Yaptığınız ilk 10 atışlık deney sonunda verilerinize göre yargınıza ne kadar 

     güvenebilirsiniz? 

2- 100 atışlık sonuca ne kadar güvenebilirsiniz? 

3- Elde ettiğiniz sonucun doğru olabilmesi için kaç atış yapmanız gerekiyor? Bunu bilmek 

    şüphesiz çok faydalıdır, çünkü yüklü yüzü  95 kesinlikle belirtebilirseniz atışa devam  

    etmenin çok az önemi olabilir. 

 

 

Ki-Kare (Chi-square)Testi, 2.     

 

Eğer N gözlem yaparsak ve her birinin  olabilir sonucu varsa ( bir zar için  = 6 ) verilen 

belli bir olayın gözlenen F(n) frekansı ile kuramsal Nf(n) frekansı arasındaki beklenen sapma 

hakkında tahmin yapabiliriz. 60 atışta verilen bir n için frekansı beklediğimiz gibi 10 değil de 

12 olarak bulabiliriz. 600 atış için de 100 yerine 94 bulabiliriz. Burada önemli nokta şudur; N 

atış sayısı arttıkça beklenen ve gözlenen frekanslar arasındaki fark, beklenen frekansın kendisi 

ile aynı hızla artmaz. Gerçekte, bu farkın ortalama olarak beklenen frekansın karekökü ile 

orantılı olarak arttığa inanmak gerekir. 

 

Yukarıdaki ifadeye göre,  

 

  2
1

Nf(n)

Nf(n)-F(n)
                                                                                  (1)                     

 

niceliği verilen bir n için 1 basamağında olmalıdır. Elde edilebilecek negatif farkları ortadan 

kaldırmak için yukarıdaki ifadenin karesini alırız: Sonra da n’nin farklı  değeri için bu 

terimleri toplarız (zar için  = 6 ‘dır). Sonuç genellikle 2  ile gösterilir:  

 

 


n

2

2

Nf(n)

Nf(n)-F(n)
                                                                (2) 

 

Bu toplamın  basamağında olmasını bekleriz; ’den yeterince büyükse, başka bir deyimle 

gözlenen frekanslar ile beklenen frekanslar arasında ortalama olarak beklenmedik büyük 

farklar varsa, o zaman gözlemekte olduğumuz sistemin beklediğimiz gibi ideal dağılıma 

uymadığından şüphelenebiliriz. İdeal sistem yüklenmemiş bir zar ise, bunun için f(n)=1/6’dır. 

2 ‘nin 6’dan büyük bir değeri zarın yüklenmiş olduğunu gösterir.  

 

Bütün durumların eşit olasılıklı olduğunda f(n) =1/ ‘dur. Ayrıca F(n) = N olgusundan da 

yararlanabiliriz. Bu durumda Eşitlik (2)’yi basitleştirerek  

 

  





















 

n

2

2 1
N

F(n)
N                                                            (3) 

 

elde ederiz. 

 

Örneğin Şekil 1’de gösterilen değerler için  
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              4.41)24.0(6102                                                                    (4) 

 

dür. Bu  basamağında olduğuna göre gözlenen sapmaların önemli olmadığını kabul 

edebiliriz.  

 

Fakat sapmaların önemli olup olmadığına nasıl karar veriyoruz? Her bir 10 atışlık dizi için 2 

değerini hesaplayarak bu 10 atışlık diziyi çok sayıda tekrarladığımızı kabul edelim. 2 için 

Şekil 3’deki gibi normalleştirilmiş bir dağılım bekleriz. Verilen 2 değeri, dağılımda daha 

büyük değer alma olasılığı ile belirginleşir. Bu, belli bir değeri aşan 2 değerine rastlayacak 

eğrinin altında kalan alanın yüzdesidir. Buna P güvenilirlik düzeyi denir. Küçük bir 

güvenilirlik düzeyi, olayların dağılımının gelişi güzel olma olasılığının çok küçük olduğunu 

anlatır. Şu halde incelediğimiz durumda yüklü bir zarın büyük bir ki-karesi olacak ve bunu 

tutan güvenilirlik düzeyinin de küçük olması gerekecektir. Tablo1’de 2 ‘nin altı olay için 

değişik güvenilirlik düzeylerindeki değerleri verilmiştir. O halde 2 ‘nin 4,4 değeri için 

dağılımın gelişi güzel olduğuna hemen hemen  80 güvenebiliriz. Bu, daha büyük N için 

sapmalar görülmeyecek demek değildir. Sadece 10 atış için sapmaların önemli olmadığını 

söylüyor. 

 

Şekil 3. Güvenilirlik düzeyi 

 

 

Tablo1. Güvenilirlik düzeyleri 

 

Güvenilirlik Düzeyleri() P 

 = 6 

2 

99 0.872 

98 1.134 

95 1.635 

90 2.204 

80 3.070 

20 8.558 

10 10.645 

5 12.592 

2 15.033 

1 16.812 

0.1 22.452 

 

F (2) 

2 

1-P P 

0 
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Yeşil ve kırmızı zarlar için 10 ve 100 atıştaki ki-kareleri hesaplayın. Hangi zarın yüklenmiş 

olduğunu düşünüyorsunuz? Güvenilirlik düzeyiniz nedir? (Burada istatistiksel bir dalgalanma 

gözlüyorsunuz.) 

 

 

 

SORULAR 

 

1. Yüklenmemiş bir zar için teorik f(n) olasılıkları 

 





6

1n

1f(n)  

 

      bağıntısını sağlamalıdır. Neden? Eğer zar yüklenmiş ise bu bağıntı yine sağlanır mı?  

      Açıklayın. 

 

2. Bir paranın 100 defa havaya atıldığını ve sonucun 54 yazı 46 tura geldiğini kabul edin. 

      Paranın hileli olup olmadığı hakkında ne söyleyebilirsiniz? 

 

3. Soru 1’deki bağıntıya göre f(n)’nin altı değerinin hepsi de bağımsız değildir; herhangi beşi  

      bilinirse altıncısı hesaplanabilir. Bu 2 sınamasını  = 6 yerine  = 5 alacağınızı mı  

      söylüyor? Açıklayın. 

 

4. Hilesiz (simetrik) bir madeni para birçok defalar atılırsa yazıların turalara oranı bire 

      yaklaşmalıdır. Bu ayrıca yazı ve tura sayısı arasındaki farkın sıfıra yaklaşacağı anlamına  

      gelir mi? Yani fark, deneme sayısı ile birlikte çok büyük değerlere ulaşırken oran yine de  

      bire yaklaşabilir mi? Açıklayın. 

 

5. 2 sınaması veya bunun değiştirilmiş bir şekli, yüklü bir zarın hangi tarafının yüklü  

      olduğunu bulmada kullanılabilir mi? Bunun nasıl yapılabileceğini anlatın. 
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2  Değerleri 
 

 

 : Serbestlik derecesi 

 

 OLASILIK 

 0.99 0.98 0.95 0.90 0.80 0.70 0.50 0.30 0.20 0.10 0.05 0.02 0.01 0.001 

1 .00016 .00063 .0039 .016 .064 .15 .46 1.07 1.64 2.71 3.84 5.41 6.64 10.83 

2 .02 .04 .10 .21 .45 .71 1.39 2.41 3.22 4.60 5.99 7.82 9.21 13.82 

3 .12 .18 .35 .58 1.00 1.42 2.37 3.66 4.64 6.25 7.82 9.84 11.34 16.27 

4 .30 .43 .71 1.06 1.65 2.20 3.36 4.88 5.99 7.78 9.49 11.67 13.28 18.46 

5 .55 .75 1.14 1.61 2.34 3.00 4.35 6.06 7.29 9.24 11.07 13.39 15.09 20.52 

6 .87 1.13 1.64 2.20 3.07 3.83 5.35 7.23 8.56 10.64 12.59 15.03 16.81 22.46 

7 1.24 1.56 2.17 2.83 3.82 4.67 6.35 8.38 9.80 12.02 14.07 16.62 18.48 24.32 

8 1.65 2.03 2.73 3.49 4.59 5.53 7.34 9.52 11.03 13.36 15.51 18.17 20.09 26.12 

9 2.09 2.53 3.32 4.17 5.38 6.39 8.34 10.66 12.24 14.68 16.92 19.68 21.67 27.88 

10 2.56 3.06 3.94 4.86 6.18 7.27 9.34 11.78 13.44 15.99 18.31 21.16 23.21 29.59 

11 3.05 3.61 4.58 5.58 6.99 8.15 10.34 12.90 14.63 17.28 19.68 22.62 24.72 31.26 

12 3.57 4.18 5.23 6.30 7.81 9.03 11.34 14.01 15.81 18.55 21.03 24.05 26.22 32.91 

13 4.11 4.76 5.89 7.04 8.63 9.93 12.34 15.12 16.98 19.81 22.36 25.47 27.69 34.53 

14 4.66 5.37 6.57 7.79 9.47 10.82 13.34 16.22 18.15 21.06 23.68 26.87 29.14 36.12 

15 5.23 5.98 7.26 8.55 10.31 11.72 14.34 17.32 19.31 22.31 25.00 28.26 30.58 37.70 

16 5.81 6.61 7.96 9.31 11.15 12.62 15.34 18.42 20.46 23.54 26.30 29.63 32.00 39.29 

17 6.41 7.26 8.67 10.08 12.00 13.53 16.34 19.51 21.62 24.77 27.59 31.00 33.41 40.75 

18 7.02 7.91 9.39 10.86 12.86 14.44 17.34 20.60 22.76 25.99 28.87 32.35 34.80 42.31 

19 7.63 8.57 10.12 11.65 13.72 15.35 18.34 21.69 23.90 27.20 30.14 33.69 36.19 43.82 

20 8.26 9.24 10.85 12.44 14.58 16.27 19.34 22.78 25.04 28.41 31.41 35.02 37.57 45.32 

21 8.90 9.92 11.59 13.24 15.44 17.18 20.34 23.86 26.17 29.62 32.67 36.34 38.93 46.80 

22 9.54 10.60 12.34 14.04 16.31 18.10 21.24 24.94 27.30 30.81 33.92 37.66 40.29 48.27 

23 10.20 11.29 13.09 14.85 17.19 19.02 22.34 26.02 28.43 32.01 35.17 38.97 41.64 49.73 

24 10.86 11.99 13.85 15.66 18.06 19.94 23.34 27.10 29.55 33.20 36.42 40.27 42.98 51.18 

25 11.52 12.70 14.61 16.47 18.94 20.87 24.34 28.17 30.68 34.38 37.65 41.57 44.31 52.62 

26 12.20 13.41 15.38 17.29 19.82 21.79 25.34 29.25 31.80 35.56 38.88 42.86 45.64 54.05 

27 12.88 14.12 16.15 18.11 20.70 22.72 26.34 30.32 32.91 36.74 40.11 44.14 46.96 55.48 

28 13.56 14.85 16.93 18.94 21.59 23.65 27.34 31.39 34.03 37.92 41.34 45.42 48.28 56.89 

29 14.26 15.57 17.71 19.77 22.48 24.58 28.34 32.46 35.14 39.09 42.56 46.69 49.59 58.30 

30 14.95 16.31 18.49 20.60 23.36 25.51 29.34 33.53 36.25 40.26 43.77 47.96 50.89 59.70 
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OLASILIK DAĞILIMI 

 
Deneyde Kullanılan Araçlar 

 

Değişik renkte 3 adet 20 yüzlü zar. Bu zarların yüzlerinde 0 ‘dan 9’ a  kadar olan 

sayılar  ikişer kez yazılmıştır. 

  

GİRİŞ 

 

Bir rakamlı bir gelişigüzel sayılar çizelgesinde 0’dan 9’a kadar olan sayılar aynı 

olasılıkla ortaya çıkarlar. Örneğin çok sayıda tek rakamın bulunduğu büyük bir 

listedeki 7’leri sayarsak 7’lerin sayısı, toplam rakam sayısının yaklaşık onda biridir. 

Toplam rakam sayısı büyüdükçe oran onda bire daha da yaklaşır. Gelişigüzel seçilen 

bir sayının 7 çıkma olasılığı 1/10 ‘dur dendiğinde anlatılmak istenen budur. Aynı 

şekilde madeni bir para atıldığı zaman, yazı gelme olasılığı 1/2 ‘dir. Bunun anlamı 

çok sayıda atış yapılırsa yazı sayısının, toplam atış sayısına oranı 1/2 olacaktır. Bu 

söylenenler ancak paranın fiziksel olarak bir yana eğilimi olmadığı durumlar için 

geçerlidir. 

Deneyde 20 yüzlü 3 zar kullanarak üç basamaklı bir sayı çizelgesi hazırlanacaktır. 

Zarlar hilesiz ise her zar üzerindeki sayı gelişi güzel olacaktır. Gelişigüzel sayı 

çizelgesi çeşitli olasılık dağılımlarının deneysel olarak incelenmesinde ve deney 

sonuçlarının kuramsal beklentilerle karşılaştırılmasında kullanılacaktır. 

Bir sayı kümesini oluştururken, özellikle bu sayılar deneysel bir ölçü veya bir sınav 

sonucu ile ilgili ise, bu sayılar grubunun bazı ilginç özellikleri vardır. Bu 

özelliklerden en belirgini genellikle ortalama değer veya kısaca ortalama denen 

aritmetik ortalamadır. “Sınavda ortalama neydi? Aldığın not ortalamanın altında mı 

üstünde mi?”soruları her sınıfta duyulur. Öğrenciler tarafından alınan tüm puanlar 

toplanarak bulunan sonuç,  öğrenci sayısına bölünür. n1 ,  n2 ,  n3  .....,nN  veya bir 

örneği  ni (i =1,2,.....N ) ile gösterilen  N tane sayı varsa, ve bunların ortalama değeri 

n  ile gösterilirse,tanıma göre; 

 
                              

N

nnn
n N21 


...
 

N

1
 



N

1i

in                                            ( 1 ) 

 

olacaktır. Ortalama değer bulunduktan sonra ilginç başka bir soru, değişik sayıların, 

ortalama değerden, ortalama olarak ne kadar farklı olduğudur. Örnek olarak: Eğer bir 

sınav sonucunun ortalaması 70 ve sonuçların çoğu 65 ile 75 arasında ise “serpilme” 

çok fazla değil, fakat sonuçlar 20’den 99’a kadar yayılmışsa serpilme oldukça 

büyüktür.Açık olarak görülüyor ki 60 puanın iki durumdaki yeri farklıdır.Öyleyse 

dağılganlığın da nicel olarak ölçülmesi gerekir. Bu dağılmaya genel olarak serpilme 

veya dağılganlık(dispersiyon) denir. 

 

Dağılganlığı bulmak için şu yapılabilir: Her sayı ile ortalama arasındaki fark ve bu 

farkların ortalaması alınabilir. Bazı farklar pozitif diğerleri negatif olduğu için bir 

takım güçlükler ortaya çıkar. Gerçekte farklar ortalamasının sıfır olduğunu 

doğrulamak kolaydır. Bu güçlüğü ortadan kaldırmak için her farkın karesini alarak 

pozitif sayılar elde edilir. Kareleri toplayıp N ‘ye bölerek ortalamayı bulur ve sonra 

da karekökü alınır. Sonuca bazen “ kare ortalama karekökü “ veya “ kok” sapması 
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denir; fakat asıl adı standart sapmadır. Bu şekilde ölçülen dağılganlık genellikle  

ile gösterilir. Yukarıda sözle verilen tanım aşağıdaki ifade ile verilir. 

 

2  =       
N

nnnnnn
2

N

2

2

2

1  ...  =  



N

1i

2

i nn
N

1
           (2) 

 

Standart sapmanın karesi olan 2 büyüklüğüne genellikle varyans (variance) denir.   

Çoğu kez özel bir sayı setinin(grubunun) ortalaması ve varyansı ile bu sayıların 

seçildiği ve önceden varolduğu kabul edilen bir sayılar grubunun ortalaması ve 

varyansını ayırt etmek gerekir. Örneğin yirmi yüzlü zarlardan biri ele alınmış olsun. 

Bütün sayılar ayni olasılıkla çıkıyorsa ortalamanın tam 4.50 olması gerektiği 

kolaylıkla görülebilir. Eğer zar 36 kez atılırsa elde edilen sonuç 4.50 ‘den biraz farklı 

olabilir ve eğer 9 kez atılırsa ortalamanın 4.50 ‘a yakın olması söz konusu olamaz. 

Belli bir deneyde elde edilmiş sayılar grubu olan bir örnek dağılım ile bu dağılımın 

alınmış olduğu, çok sayıdan oluşmuş ana dağılımın birbirinden ayırt edilmesi 

gerekir. Ayni şekilde, ele alınan örnekte tam olarak 4.50 olan ana ortalama ile 

genellikle biraz farklı olan örnek ortalamayı da birbirinden ayırt edmek gerekir. 

Çoğu kez örnek dağılımın içindeki eleman sayısı fazla olması durumunda, ana 

dağılıma çok yakın sonuçlar vermesi beklenir. Benzer şekilde örnek varyans  ve 

ana varyans gibi tanımlar da  yapılabilir.. 

 

DENEY 
 

Yirmi yüzlü üç zardan elde edilen sayıları Çizelge 1 ‘e geçirerek 360 rakamlı bir 

gelişigüzel sayılar çizelgesi kurun. Zarlardan sayıları okurken hep aynı sırayı izleyin 

(örneğin kırmızı, sarı, mavi) . Bu kural neden önemlidir? Üç zarla bir tek atışta üç 

sayı elde ederek kurulmuş bir sayı çizelgesini, bir atışta bir sayı elde ederek kurulan 

çizelgeden ayırt edebilir misiniz? 

Her sayının (0 ’dan 9 ‘a kadar) çizelgede kaç kez tekrarlandığını Çizelge 2A ‘ ya 

geçirin ve bu saymalardan her sayının tekrarlanma olasılığını hesaplayın. 

Sonuçlarınız ana dağılımdaki kuramsal olasılıklarla ne kadar uyuşuyor? 

 

Çizelge 1 ‘den 36 sayılık bir alt grup seçin. Gelişigüzelliği sağlamak için ardarda bir 

sayı dizisi seçmek faydalıdır. Bu sayıların frekanslarını ve hesaplanan olasılıklarını 

Çizelge 2B’ye kaydedin. Bu sayı örneğinin ortalamasını ve varyansını hesaplayın. 

Sonuçlarınızı aşağıda hesaplanan ana ortalama ile ve varyansla karşılaştırın. Ayrıca 

Çizelge1’in tümü için orta lamayı ve varyansı hesaplıyarak ana değerlerle 

karşılaştırın. Ayrı ayrı sayılarla uğraşacak yerde her sayının çıkış frekansını 

kullanırsanız hesaplar kolaylaşır. Örneğin, ni sayısı örnek içinde Fi kez çıkmış ise 

örnek ortalaması: 

 

n  =
...

...




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 ile verilir. 
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ÇİZELGE   1. 

 

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

                                                

 

 

 

 

ÇİZELGE  2A                                             ÇİZELGE   2B 

_____________________________        ____________________________ 

                  Sayı     Frekans       Olasılık                    Sayı     Frekans       Olasılık 

                                                                                                                                             

                     0                                                               0  

                     1                                                               1 

                     2                                                               2 

                     3                                                               3 

                     4                                                               4 

                     5                                                               5 

6 6 

7 7 

8 8 

9 9                             

 

 

 

Toplamlarda 36 veya 360 yerine sadece 10 terim alınmıştır. Benzerince örnek 

varyansı  

 

 

2   =  
 


 

i

2

ii

F

nnF
                                                        ( 4 ) 
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olur. Şunu da belirtelim ki, her iki durumda Fi  örnekteki rakam sayısı toplamı 

olan N’ ye eşittir. 

 

Bu halde ana dağılımdaki bütün i ‘ler için Fi =  N / 10 bekleriz. O zaman Denklem 

(3 )  

 

  5410nn i ./          

 

verir ve Denklem ( 4)’de 

 

2 = 
 

10

nn
2

i 
 = 

10

n 2i
- 

2n     =28.50 – 20.25 = 8.25      ( 5 ) 

 

verir. 36 veya 120 girişle sınırlı bir örnekte ortalamayı tam 4.5 bulamazsak bize pek 

şaşırtıcı gelmemeli. Buna karşın daha büyük örnekler için kabulümüzün doğru 

çıkacağını beklemek gerekir. Sonuçlarımızın akla yakın olup olmadığına sezişle 

karar verin. Ayrıca örnek büyüklüğüne bakarak uyuşmanın düzelip düzelmediğine 

dikkat edin. Neyin uygun bir sapma sağladığı Binom Dağılımı deneyinde ele 

alınarak tartışılmaktadır. 

 

 

Rakam Çiftleri        

 

Şimdi 100 rakam çifti seçin. Bu basitçe her üç rakamlı gruplar serisinde soldaki ilk 

iki rakamını almakla yapılır. Her çiftin toplamını alarak değeri 0 ile 18 arasında 100 

sayı elde edin. Bu rakamların toplamlarının çıkış olasılığı ayni değildir. Çünkü 

bunların çoğu farklı birkaç şekilde oluşturulur. Çizelge 3 her toplamın çıkabileceği 

çeşitli yolları ve bunların olasılıklarını tam olarak vermektedir. Bu çizelgeyi 

tamamlayın. Olasılıklar toplamı bire eşit oluyor mu? 

 

Seçtiğiniz 100 çiftli örnekte 0 ile 18 arasındaki her sayının çıkış frekansını Çizelge 4 

‘e yazın. Toplam çift sayısına bölerek örnek olasılığını hesaplayın Çizelge 3 ‘de 

verilen ana değerlerle karşılaştırın. Örneğinizin ortalama değerini hesaplayın ve 

bunu ana ortalama değer olan 9 sayısı ile karşılaştırın. Örneğinizin varyansını 

hesaplayın 16.50 ana değeri ile karşılaştırabilirsiniz. İki rakamlı sayıların toplamı ile 

ilgili varyansın bir rakamlı sayıların varyansının iki katına eşit olduğuna dikkat edin. 
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ÇİZELGE 3.   

 

 

                  

                      Toplam                                                                          Olasılık 

 

                          0       00                                                                   1/100 = 0.01 

                          1       01      10                                                         2/100 = 0.02 

                          2       02      11     20                                                3/100 = 0.03 

                          3       03      12     21      30                                      4/100 = 0.04 

                          4       04      13     22      31      40                            5/100 = 0.05 

                          5 

                          6 

                          7 

          8  

          9  

        10  

        11  

        12 

        13 

      14 

      15 

                         16       79      88     97                                               3/100 = 0.03 

                         17       89      98                                                        2/100 = 0.02 

                         18       99                                                                  1/100 = 0.01 

 

 

 

            

 

ÇİZELGE  4     
                          

 

Sayı Frekans Olasılık Sayı Frekans Olasılık 

0   10   

1   11   

2   12   

3   13   

4   14   

5   15   

6   16   

7   17   

8   18   

9      
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SORULAR  

     

1. Hava raporundaki yağmur olasılığı onda birdir denirse, bundan ne anlıyorsunuz? Bu 

durum hangi anlamda istatiksel bir örnektir? 

 

2. Her biri 0 ile 9 arasında gelişigüzel 5 sayıdan hepsinin, sadece birinin 7 olma 

olasılığı ile hiçbirinin 7 olmama olasılığı nedir? 

 

3. N sayıda bir grup için ortalama değerden sapmaların ortalamasının 0’a eşit olduğunu 

gösterin. 

 

4. Gelişigüzel sayılar çizelgesinin tam anlamıyla gelişigüzel olmasını engelleyecek hata 

kaynakları nelerdir? 

 

5. Herhangi N tane ni sayılar grubu için varyansın 2 =n2ort- (n )2  ile verildiğini 

gösteriniz. Burada  n2ort simgesi 2

in ’nin ortalamasını gösterir. 

 

6. p tane ni sayısının toplamının varyansının, bir tek ni sayısının varyansı defa p olduğunu 

gösteriniz. Ortalama değer p ile oranlı biçimde değişirken standart sapmanın sadece 

karekök p ile azaldığına dikkat edin. Buna göre toplam içerisinde ne kadar çok rakam 

bulunursa ortalamaya göre olan dağılım o kadar dar olacaktır. 

 

7. Çizelge1‘de olasılıklar toplamının 1 olduğunu, toplam işlemi yapmadan gösteriniz. Yol 

gös.: İlk N tam sayısının toplamı  N(N+1)/2 ‘dir. 

 

8. Gelişigüzel iki rakam toplamlarının dağılımı için ana ortalama ve varyans değerlerini 

türetiniz. 
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BİNOM DAĞILIMI 
 

GİRİŞ 

 

Bu deneyde binom dağılımı diye bilinen, çok yararlı özel bir olasılık dağılımını incelemek 

için gelişigüzel sayılar çizelgenizi ve bazı basit deney araçlarını kullanacaksınız.  

Binom dağılımını tanıtmak amacıyla bazı para atma problemleri ile işe başlayalım. Simetrik 

bir para atıldığında bunun "yazı" gelmesi veya "tura gelmesi olasılığı 1/2'dir (yani %50). 

Paranın düşüş şeklini denetleyemeyiz ve her atış daha önceki tüm atışlardan bağımsızdır. Bu 

nedenle bir atıştan yazı çıkmışsa, bir yazı daha gelme olasılığı yine 1/2'dir; para bir önceki 

atışı hatırlamaz. 

Bu sırada iki yazı gelme olasılığı nedir? Bu değişik bir sorudur. Bu olayın çıkması her birinin 

başarı olasılığı 1/2 olan bağımsız iki ayrı olayın oluşlarına bağlıdır. Bileşik olayın olasılığı 

ayrı olasılıkların çarpımına, veya 1/4'e eşittir. Bu sonucu değişik bir yoldan elde etmek için 

şuna dikkat etmek gerekir; para iki defa atılırsa eşit olasılıklı dört ayrı olay vardır:  

 

   YY  YT  TY  TT 

 

Bu dördünden yalnız bir tanesi istediğimiz olaydır, o halde olasılık 1/4'dür. Bir parayı ardısıra 

artacak yerde, iki özdeş parayı aynı anda atarak da aynı sonucu elde edebiliriz. Zaman 

sırasının bir önemi yoktur. 

 

Üç atış halinde, her atışın olabilir iki sonucu bulunduğu için olasılığı eşit olayların toplam 

sayısı 23 veya 8'dir. Bu olaylar şunlardır:  

 

 YYY YYT YTY YTT TYY TYT TTY  TTT 

 

Şu halde arka arkaya üç yazı elde etme olasılığı 1/8’dir. Gerçekten yukarıdaki olayların her 

biri için olasılık (1/2)3’tür. N atış halinde yazı ve turaların herhangi bir dizilişi için olasılık 

(1/2)N olur. 

 

Şimdi biraz daha değişik bir soru soralım. Üç atışta iki yazı gelme olasılığı nedir? Bu sonucu 

veren üç değişik diziliş vardır; YYT, YTY ve TYY. Her birinin olasılığı 1/8 olduğuna göre 

toplam olasılık 3/8'dir. Ayni şekilde üç atışta bir tek yazı gelme olasılığı da 3/8 olacaktır. Sıfır 

ile üç arasında herhangi bir yazı gelme olasılığı 1/8 + 3/8 + 3/8 + 1/8 = 1'dir. Böyle olması da 

pek şaşırtıcı olmasa gerek. 

 

N atışta n yazı gelme olasılığı nedir? İlk önce, n yazıyla, N - n turanın herhangi özel bir 

dizilişi için olasılık (1/2)N'dir. Fakat n yazı kaç değişik düzenleme içinde gelebilir? Yani, her 

defasında N sayısının n tanesi alınarak yapılabilecek düzenleme kaç tanedir? Bu soruyu 

cevaplandırmak için her birinin ayrı bir düşme yeri olan N tane paramız bulunduğunu 

düşünmek yararlıdır. n tane yazıyı bu yerlere dağıtırken bunlardan birincisi için N tane yer 

seçmeye hakkımız var. Bu yerlerden her birine karşılık geri kalan N - 1 yeri ikinci yazıya, 

bunlardan her birisi için de N - 2 yeri üçüncü yazıya vb. seçerek gider, sonunda  n inci yazıyı 

geri kalan  ( N - n + 1 ) yerden birine yerleştirebiliriz. Buna göre N atış arasında n yazının 

toplam düzenlenim sayısı 

 

         N(N-1) (N-2) (N-3)....( N - n + 1 )      (1) 
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gibi olacaktır. Fakat bu doğru değildir, çünkü aslında eşdeğer olan çok sayıda düzenlenişi 

farklıymış gibi saydık. n yazıdan hangilerinin ayrı konumlarda olduğu bizi ilgilendirmez; yazı 

yazıdır. O halde gerçek sayısını bulmak için bunu, n yazının kendi aralarında 

düzenlenişlerinin kaç şekilde yeniden düzenlenebileceğini gösteren sayıya bölmemiz 

gerekmektedir. Bunu hesaplamak için n sayının yeni baştan düzenlenişinde n tane yazıdan 

herhangi birini önce, geri kalan n - 1 taneden herhangi birisini ikinci olarak seçip sonuçta bir 

tek yazı kalıncaya kadar bu işleme devam edebileceğimize dikkat ediniz. n cismin böyle 

düzenlenme sayısına genel olarak n cismin yerdeğiştirme  (permutasyon) sayısı denir, basit 

bir şekilde 

 

  n(n-1) (n-2)...(3) (2) (1) = n!       (2) 

 

olacaktır. n!  ifadesi  "n faktöriyel" diye okunur ve n'den başlayıp birer birim azalan bütün tam 

sayıların çarpımının kısaltılmışını gösterir.  Tanım olarak 0! = 1'dir. 

 

Demek ki N denemedeki n yazıyı çeşitli düzenler içinde sıralama sayısı ( buna genellikle her 

defasında n tanesi seçilen N cismin birleştirim ( kombinezon) sayısı denir.) 

 

   
!n

)1nN)....(2N)(1N(N 
      (3) 

 

 

dir. Çoğu kez      








n

N
    ile gösterilen bu ifade,  pay ve payda  (N – n) ! ile çarpılıp    

  

basitleştirilerek aşağıdaki şekle  konabilir.  

 

 

                                        








n

N
     = 

!n)!nN(

!N


      (4) 

 

 

Son olarak,  PN(n)  ile göstereceğiniz N atışta n yazı elde etme olasılığı 

 

 

PN(n) = (
2

1
)N  

!n)!nN(

!N


 =  (

2

1
)N    









n

N
      (5) 

 

    

 

olacaktır. Bunu sınamak için 3/8 olduğunu bildiğimiz 3 atışta iki yazı elde etme olasılığını 

hesaplayabiliriz. Bu durumda n = 2 ve N = 3'tür. 

 

 

 P3(2) = (
2

1
)3  

!2)!23(

!3


 =  

8

3
 

 

O halde bulduğumuz ifade işliyor! Olağan başka durumları sınayabilirsiniz. Şimdi küçük bir  
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genelleştirmeye gidelim. Para atışında bir tek yazı için olasılık 1/2 alınmıştı. Yine N bağımsız 

olayımız bulunsun, fakat her birinin kazanma olasılığı 1/2 değil, 0 ile 1 arasında bulunan 

başka bir p sayısı olsun. Buna göre N denemenin tam n tanesinin kazanma olasılığı ne 

olacaktır? 

 

Bütün hesaplar basit bir değişiklikle daha önce yapılanlar gibidir. n kazanmanın özel bir 

şekilde düzenleniş olasılığını bulmamız ve bunu yine Denk.(4) ile verilen n kazancın N 

deneme arasından seçilme yolları sayısı ile çarpmamız gerekiyor. n kazanma ve N - n tane 

kaybetmenin özel bir düzenlenişi için olasılığı, p kazanma, q = 1 - p'de kaybetme olasılığı 

olmak üzere 

 

  nNnnNn )p1(pqp          (6) 

 

dir. Her denemede kazanma olasılığı p olduğuna göre N denemede tam n kez kazanma 

olasılığı 

 

)n(P p,N = nNnqp   








n

N
 = nNnqp 

!n)!nN(

!N



    (7) 

 

 

olacaktır. Dikkat edilirse para atma deneyinde p = q = 1/2 olduğu için bu ifade öncekine 

indirgenmektedir. 

 

Genelleştirilmiş olasılık formülünün basit bir uygulaması olarak birkaç tane yirmi yüzlü zarın 

atıldığını düşünelim: Örneğin böyle 3 zarı attığımız zaman, iki 7 elde etme olasılığı nedir? 

Her ayrı olay için p olasılığı 1/10,    N = 3 ve n = 2'dir. Buna göre olasılık 

 

 P3,1/10 (2) =  (
10

1
)2  (

10

9
)3-2 

!2)!23(

!3


 = 0.027 

 

dir. Denk (7)  ile verilen olasılık dağılımına, binom açılımının katsayıları ile yakın ilişkisi 

nedeniyle binom dağılımı denir. Gerçekten, 

 

 

(q + p ) N = nNq

N

0n

np 



    








n

N
    =     









0

N
q N +  









1

N
q N-1p +  

 

 










2

N
q N-2 p 2  + • • • +  









N

N
 p N   (8) 

 

olduğunu göstermek güç değildir.  Buradan beklenildiği gibi hemen 

                                            

1)n(P

N

0n

p,N 


       (9) 
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olduğunu görüyoruz. ( Bunu neden bekledik?) 

 

Binom dağılımında n'nin ortalama değeri ilgi çekicidir. Bir an için N tane para atma 

problemi düşünülürse, yazıların ortalamasının veya ortalama değerinin N deney sayısı ile her 

atışta yazı gelme olasılığının yani 1/2'nin çarpımına, başka deyimle N/2'ye eşit olduğu açıktır. 

Biraz daha az açık olsa da P'nin 1/2'ye eşit olmadığı halde de n ortalama değerinin 

 

 

   n = Np         (10) 

 

ye eşit olacağı akla yatkındır. Bunun doğru olduğu gösterilebilir; fakat bir takım hesap "oyun" 

ları gerektirdiğinden burada verilmeyecektir. Benzer oyunlarla1 dağılımın "genişliğini" veren 

dağılma ( varians ) da hesaplanabilir. Bu ise 

 

    2 = N p q        (11) 

 

ile verilmektedir. 

 

 

POİSSON DAĞILIMI 

 

N'nin büyük değerleri için büyük sayıların faktöriyelleri söz konusu olduğundan binom 

dağılımı formülü kullanışsız hale gelir. Bu halde kullanılması çok daha kolay olan yaklaşık 

ifadelerin elde bulunması iyi bir rastlantıdır. Burada, N büyürken p'nin çok küçüldüğü ve 

böylece n = Np ortalama değerinin sonlu kaldığı hallerde geçerli olan ve Possion dağılımına 

götüren yaklaşıklığı ele alacağız. N büyürken p'nin küçülmediği farklı bir yaklaşıklık Deney 

Mİ 6'da incelenecektir. Bu yaklaşıklığın vereceği dağılım normal veya Gauss dağılımıdır. 

 

N'nin çok büyük ve p'nin çok küçük olduğu durumlarda geçerli olan yaklaşıklık aşağıdaki 

gibidir: (Bu sınırda n'nin uygun olasılıklı değerleri ancak N'ye göre çok küçüktür.) Önce,  

 

       
)!nN(

!N


= N ( N - 1 ) • • • (N - n + 1)      (12) 

 

 

çarpanını düşünelim. Bu, N'den pek farklı olmayan n terimin çarpımıdır. Bu nedenle Denk. 

(12) ifadesinin yerine Nn  alacağız. İkinci olarak qN-n çarpanını 

 

    nNnN )p1(q
n)p1(

N)p1(




      (13) 

 

şeklinde yazalım. Burada payda hemen hemen bire eşittir, çünkü bire çok yakın bir sayının 

çok büyük olmayan bir kuvveti alınmıştır. Böylece aşağıdaki ifade elde edilir. 

 

                                                 
1 Doğrulamanın ayrıntıları için bk: H. D. Young- Statistical Treatment of Experimental Data, Mc Graw Hill 

Book Company, New York, 1962. 
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  )n(p,NP Nn )p1(p 
!n

)p1()Np(

!n

N Nnn 
     (14) 

 

 

N'yi yok etmek için a = Np kısaltmasını yaparsak; 

 

  
a

p/1)p1(
!n

na

!n

p/a)p1(na
)n(aP





 


      (15) 

 

olur. Geriye kalan iş aşağıdaki 

   

lim  (1-p)1/P 

    p0 

 

limitini hesaplamaktır: Bu limit bütün analiz giriş kitaplarında incelenmekte ve değerinin, e 

doğal logaritma tabanı olmak üzere 1/e'ye eşit olduğu gösterilmektedir. Sonuçta Poisson 

dağılımı denen  

 

  
!n

aena
)n(aP


         (16) 

 

bağıntısını elde ederiz. Bu ifadede asıl binom dağılımının belirtgin N ve  p sabitleri yerine bir 

tek a sabiti gelmektedir. Bu farkın nedeni binom dağılımının Np çarpımı sonlu kalacak 

şekilde    N'a   ve    p0'a    giderken limitini almış olmamızdır. 

 

Poisson dağılımının elde ediliş şekline bakarak, olay sayısının çok büyük ve bir olayın 

kazanma olasılığının çok küçük olduğu, böylece a = Np çarpımının sonlu kaldığı durumlara 

uyan dağılımın bu olduğu bilinmelidir. Possion dağılımının en genel uygulama yerlerinden 

biri radyoaktivitenin anlatımıdır. Elimizde herbirinin belli bir zaman aralığında bozunma 

olasılığı 10-19 olan 1020 tane radyoaktif çekirdek bulunabilir. Bu zaman aralığındaki toplam 

parçalanma sayısı N = 1020, p = 10-19 ve a = 10 olmak üzere Poisson dağılımı gösterir. Poisson 

dağılımı için n ortalama değerini ve variansı, binom dağılımında bunlara uyan Denk (10) ile 

(11)'de verilen niceliklerden dolaysız olarak hemen hesaplayabiliriz. q  bire çok yakın 

olduğundan   a   parametresi cinsinden aşağıdaki basit sonuçları buluruz.  

 

   n = a  2 = a       (17) 

 

 

 

DENEY             

 

1. Deney 4 için hazırlanan gelişigüzel sayılar çizelgesi binom ve Poisson dağılımları için 

ilginç örnekler verir. Yirmi yüzlü zar ile elde edilen üç-rakamlı gelişigüzel sayıları alarak 

her üç gruptaki 7'lerin sayısı için bir frekans sayımı yapın. Yani, üç rakamlı sayılardan kaç 

tanesinde hiç 7 yoktur; bir tane 7, iki 7 veya üç 7 kaç tanesinde var? Sonuçlarınızı ana 

binom dağılımına göre beklediklerinizle karşılaştırın. Örnek ortalamasını ve variansı 

hesaplayıp ana binom dağılımındaki değerlerle karşılaştırın. 
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2. Şimdi de gelişigüzel sayılar çizelgesindeki dokuz rakamlı grupları alalım. 9 rakamlı 

karesel grupların her birindeki 7'lerin sayısı için frekans sayımı yapın; çizelgede böyle 40 

grup bulunmaktadır. Sonuçlarınızı Çizelge  1’ e geçirin. 

Bütün rakamların frekans sayımını elde etmek üzere bu sayımları öteki rakamlar içinde 

tekrarlayın ve frekansları her satıra yazın. Son olarak, olasılıkları elde etmek için bunları 

toplam ölçme sayısına bölün ( ölçme sayısı 40’dır. Neden?) .  

Sonuçlarınızı  PN,1/10 (n)  binom dağılımı değerleriyle karşılaştırın. Bu dağılımın 

değerlerini hesaplarken P(n+1)'i P(n) cinsinden veren bir geri götürme (recurrence) 

bağıntısı kullanmak fazla işlem yapmayı engeller. 

 

 

 

ÇİZELGE   1 

___________________________________________________________________________ 

      Frekans [F(n)] 

 Sayı    1    2     3      4       5       6       7       8       9          0 

___________________________________________________________________________ 

0 

___________________________________________________________________________ 

1 

___________________________________________________________________________ 

2 

___________________________________________________________________________ 

3 

___________________________________________________________________________ 

4 

___________________________________________________________________________ 

5 

___________________________________________________________________________ 

6 

___________________________________________________________________________ 

7 

___________________________________________________________________________ 

8 

___________________________________________________________________________ 

9 

___________________________________________________________________________ 

 

     Binom dağlımı için uygun olan geri götürme bağıntısı Denk.(7)’nin doğrudan 

     uygulanmasıyla sınayabileceğimiz aşağıdaki bağıntıdır. 

 

   )n(P
)1n(q

)nN(p
)1N(P p,Np,N




      (18) 

 

Buna göre sadece PN,p(0)'ı hesaplamak ve bu bağıntıyı kullanmak yeterlidir. Geri götürme 

bağıntısını kullanırken başta yapılan bir hata süre gideceğinden genel olarak bu yol biraz 

sakıncalıdır. Bununla birlikte bu özel durumda artan n'ler için P’nin değerleri  çok çabuk 

küçüldüğünden bir sakınca yoktur. Gerçekten,  n4  için değerlerin 10-5'ten küçük olduğunu 

böylece daha ileri gitmenin anlamsızlığını görmelisiniz. 
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3. Şimdi 9 rakamlı gelişigüzel sayı gruplarındaki sayıların dağılımı için Poisson 

yaklaşıklığını ele alalım. N = 9,  p = 1/10  olup a = Np = 0,9'dur. Poisson dağılımını 

kullanarak    n' nin  0'dan 9'a  kadar olan  değerleri için olasılıkları yeniden hesaplayın. 

      Hiç kuşkusuz   N = 9,   N =  ' dan çok uzak olduğundan kesin bir uyuşma 

beklememeliyiz, fakat yine de karşılaştırma ilgi çekicidir. Binom dağılımı n = 0  ve n = 1 

için ( N ve p'nin özel değerlerinin sonucu olarak) aynı değerler verirken Poisson 

dağılımının P(0) ve P(1) için bunlardan sıra ile  %5  daha büyük ve daha küçük değerler 

verdiğine özellikle dikkat edin. Daha büyük  n'ler  için yaklaşıklığın  doğruluğu  artıyor 

mu,  yoksa azalıyor mu? 

 

 

SORULAR 

 

1. Denk  (18)' de verilen geri götürme (recurrence) bağıntısını çıkarınız. 

 

2. Poisson dağılımı için aşağıda verilen geri götürme bağıntısını çıkarınız. 

 

)n(P
1n

a
)1n(P aa


  

 

3. Çok sayıda yumurtadan % 1'i çürük çıkıyor. Bunlardan seçilmiş gelişigüzel bir düzine 

yumurtadan hiçbirinin çürük çıkmama, birinin ve birden fazlasının çürük çıkma olasılığı 

nedir? 

 

4. Bir Pazar günü öğleden sonra gezinti için dışarıya çıkan bir adam aşağıdaki oyunu 

oynuyor.  Hareket noktasını da içine alan her köşe başında yazı-tura atıyor. Yazı gelirse 

kuzeye, tura gelirse güneye bir öteki köşeye kadar yürüyor. N atıştan sonra başlangıç 

noktasına olan uzaklıkların olasılık dağılımını bulunuz. Adam bu oyunu birkaç Pazar 

oynadığına göre N atıştan sonra başlangıca olan ortalama uzaklığı hesaplayın. Bu 

ortalama değer  N  ile  nasıl değişir? 

 

 

5. Doğan bebek sayısının Poisson dağılımına uyduğunu ve ikiz doğma olasılığının 1/100 

olduğunu kabul edelim. Beşiz doğma olasılığını bulunuz. 
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NORMAL DAĞILIM 
 

 

GİRİŞ 

 

Normal veya Gauss dağılımı, Binom  dağılımının N büyürken p'nin sonlu kaldığı limit halidir. 

( N büyürken p'nin küçülüp Np çarpımının sonlu kaldığı Poisson dağılımından bu şekilde ayrı 

düşmektedir.) Gauss dağılımı özellikle deneysel fizikçiler için büyük önem taşır; çeşitli 

ölçümlerde yapılan gelişigüzel hataların dağılımı Gauss dağılımı ile tanımlanır. Tek tek 

hatalar bu dağılıma uymasa bile, bu hata gruplarının ortalamaları özellikle çok büyük gruplar 

için Gauss dağılımına uyar. Gelişigüzel hatalar ortalama değer etrafında (+) ve (-) olarak eşit 

olasılıkta görüldüklerinden Gauss dağılımı, Binom dağılımının özel bir hali olarak 

düşünülebilir. 

 

KURAMSAL BİLGİ 

 

Gauss dağılımının matematiksel ispatından ziyade, deneyciler için, deneysel ölçümlerdeki 

gelişigüzel hataların bu dağılıma uyması önemlidir. Bu özelliği nedeniyle bu dağılım bazen 

normal hata fonksiyonu ( normal error function) olarak anılır ve Gauss dağılımına uyan 

hatalara da normal dağılımlı ( normally distributed ) denir. Gauss dağılımı;  

 

f(x) = Ae- 
2h ( x )m 2

                                                                                              (1)  

 

şeklinde ifade edilir.  Burada A,h ve m sabitlerdir. x bir ölçümden elde edilen değer olup, 

sürekli bir değişkendir. Binom ve Poisson dağılımlarında ise bu bir tam sayıdır. 

Şekil 1 bu dağılım fonksiyonunun grafiğini göstermektedir. 

 

 

                       

 

 

 

 

 

 

 

                         

 

                                      

 

Şekil 1. Gauss dağılım fonksiyonu 

 

h parametresi, çan  eğrisinin genişliği ile ilgili bir parametredir. dx çok küçük bir aralık olmak 

koşulu ile, f(x)dx ölçme sonunda elde edilen bir değerin x ile x + dx arasında bulunma 

olasılığını verir. Bu ifadenin basit grafiksel yorumu Şekil 2'de görülmektedir . f(x)dx  aslında 

eğrinin altında dx genişliğinde taralı olan alandır. Benzer şekilde ölçülen niceliğin a≤ x ≤b 

aralığında bulunma olasılığı 
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P(a,b) = 
b

a
f(x)dx                                                                                                               (2) 

 

olacaktır. Bir ölçme sonucunun herhangibir yere düşmesinin toplam olasılığı 1' dir, buna göre 

f(x) eğrisinin altında kalan toplam alan 1 olmalıdır. 

 

 

 

 

 

 

 

 

 

                                                 

   

 

                                                             

 

 

 

Şekil 2. 

 





f(x)dx = 1                                    (3)

   

Buna normalizasyon koşulu denir. Bu koşuldan yararlanarak A,h ve m sabitleri üzerindeki 

sınırlamalar bulunabilir. 

 





 Ae -

2h ( x )m 2
 dx =1                                                                                                                    (4)                                                               

                                                                                                                                           

h (x-m) = z                                                                     (5)                                

     

alınırsa; 

 

A 



 e-

2z   dz = h                                                 (6) 

 





 e-

2z  dz =                                      (7) 

 

olduğundan; 

 

A = h /                                                                                                                             (8)

          

 

elde edilir. Böylece Gauss dağılımı; 
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f (x)  = (h /  ) e -
2h ( x )m 2

                                                                              (9)            

        

olur. 

 

Çok sayıdaki ölçme sonucunda elde edilen x değerlerinin ortalaması, x ,  bu dağılım  

fonksiyonu için hesaplanırsa;  

 

    

 

x   =  



 x f (x) dx                                             (10) 

 

x  = h /   



 x e -

2h ( x )m 2

 dx                                         (11)

          

 

bulunur. 

 

(5) deki z kullanılırsa;  

 

x  = 1 /   



(z /h + m) e-

2z  dz                                           (12) 

 

elde edilir. Birinci integral terimi, z'nin negatif ve pozitif değerlerinin birbirini götürmesi 

nedeni ile sıfır olur.  Bu durumda ortalama değer, 

                                     

 

x  = m /   



 e-

2z dz = ( m /  )   

 

x  = m                                               (13) 

 

elde edilir. 

 

Benzer şekilde varyans hesaplanabilir. 

 

2 = 



 ( x - x )2  f (x)   dx                                            (14)                       

 

2 =   



( x - m )2 (h /  ) e -

2h ( x )m 2
                                                                                                            (15) 

 

 

 

İntegralin alınması ile,  

 

2 = 1 / (2h2)      veya  = 1 / 2 h                                          (16) 

  

varyans ve standart sapma elde edilir. 
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Şekil 3 ' den görüldüğü gibi, h büyüdükçe, daha keskin bir eğri elde edilir ve buna göre, h 

dağılımın hassasiyetinin ölçüsü olarak tanımlanabilir. 

 

 

 

 

 

 

 

 

 

 

    

 

 

 

 

 

 

 

 

 

Şekil 3. 

Gauss dağılım fonksiyonun son şekli 

 

f(x) = 1/ ( 2  )  e -( x x )
2

/ 2
2                                 (17) 

 
olarak yazılabilir. 

 

Bu fonksiyonun tanımladığı eğri, x = x çevresinde simetriktir ve   her zaman dağılımın 

genişliğini verir. Eğri x = x   değerlerinde x = x deki büyük değerinin e-1/2 ‘sine düşer. 

Şekil 4, Denklem (17) nin grafiksel gösterimidir. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                  Şekil 4. 

f(x) = 1/ ( 2  )  e -( x x )
2

/ 2
2   
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DENEY 

 

 

1. Ölçülen herhangibir niceliğini a,b aralığında bulunma olasılığı (2) bağıntısı ile  

P(a,b)  = 
b

a
f(x) dx    olarak verilmişti. Buna göre; x'in x   sınırları arasındaki 

herhangibir değeri alma olasılığını  

 

P ( x - , x +  ) =  1/ ( 2  ) 








x

x
e -( x x )

2
/ 2

2 dx      

 

bağıntısına göre hesaplayın.. 

 

2. Benzer şekilde x'in (  2,2  xx ) ve  (  3,3  xx ) arasına düşme olasılığını 

bulun. 

 

3. Gelişigüzel sayılar çizelgenizdeki 360 sayı içerisinde 0 ile 9 arasındaki her rakamın kaç 

kez geldiğini sayarak bir tablo hazırlayın ve her rakamın (   xx , )   aralığına düşüp 

düşmediğini belirleyin. 

 

4. 360 sayılı tablonuzdaki tek ve çift rakamları sayın . % 95 ve % 65 ' lik bölgelerin 

sınırlarını belirleyerek tek-çift dağılımının hangi bölgede olduğunu bulun. 

 

 

5. Bir metal parayı 100 kez atarak yazı ile tura gelme sayılarını kaydedin. Bu değerin, hangi 

dağılım bölgesinin içinde olduğunu bularak paranın eğilimli olup olmadığını yorumlayın. 

 

 

SORULAR 

 

1.   Bir deneyde ölçme sonuçlarının Gauss dağılımına uyduğunu varsayarak, alınan   ölçüm- 

      lerin  ortalama değer etrafında  2/1  aralığına düşme olasılığını hesaplayınız. 

 

2. Bir sınavda alınan notlar 76 ortalama ve 15 standart sapma ile normal dağılım 

göstermektedir. Öğrencilerin % 15'i A, ve % 10'u F notu almıştır. 

 

a) A alabilmek için en düşük notu, 

b) Geçebilmek için en düşük notu bulunuz. 

 

3. Bir civalı manometrede civa sütununun yüksekliği (h) 10 kez ölçülmüş ve aşağıdaki veri- 

ler elde edilmiştir.  

 

   Ölçme no.        1      2         3        4         5         6         7         8         9        10 

         h(cm)            55.06     54.92     55.01   55.00   54.98     54.99    55.02    55.03    55.02    54.97 

          

        Bu verilerin h  =    55.00 cm ortalamaya sahip bir Gauss dağılımına uyduğu bilindiğine        

      göre; bundan sonra yapılacak iki ölçme sonucunun  (54.98 – 55.02) cm aralığına düşme 

      olasılığını hesaplayın. 
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Normal Dağılım Tablosu  

T 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 

0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 

0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 

0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517 

0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879 

0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224 

0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549 

0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852 

0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133 

0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389 

           

1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621 

1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830 

1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015 

1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177 

1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319 

1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441 

1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545 

1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633 

1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706 

1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767 

           

2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817 

2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857 

2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890 

2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916 

2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936 

2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952 

2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964 

2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974 

2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981 

2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986 

           

3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990 

 


